IY] MANUAL

DIRIGIDO A

Desarrolladores

Programacion en Cividas

FECHA

Caso practico 3 de Marzo de 2012

Caso practico de programacion en Cividas

L}
Inscripcién Registro Mercantil de Pontevedra, Tomo 3116, Libro 3116, Folio 30, Hoja PO-38276 — C.L.F.: B-36.499.960 I m a t I a

your innovation partner

IY] MANUAL

Autor ‘ Carlos Fernandez Villar

Fecha creacion ‘ 03 Marzo 2012

Versiones

1.0, 03/03/2012 | Carlos Version inicial del documento.
Fernandez

28 Imatia

your innovation partner

IY] MANUAL

1Y o o] 3R 3
CREACION DE UN PROYECTO CIVIDAS EN ECLIPSEceeveeueetiseieseesesseesessssesssssesssssssssssssssssssesssssssssssssnsessesssssess 4

BASE DE DATOS ..t eutteeutteetteesuteesuteasseeessseasseeesssessseeesssesssssesasesssseessseessseessseessseessessnsesssessnsessnseesnsessnsesssseesssesensessnses 4
PROYECTO ECLIPSE..uveevttetteesuueesuteasuseessseasuseesssesssseessseassssesssessssessnsessssessnsessssessnsessnsessnssssnsessnssssnsessnsessnsessssesansessses 4
INUBVO PIOYECEOevvviiiiiiiiiiiiiiettiee ettt e ettt e e e s s stab et e e e s e s sisaneeee s

Archivos de propiedades.............
Librerias / Proyectos asociados
e 1 74e 1o (014 =2 S USSP OPPRRPP 6
CREACION DE UN NUEVO EXPEDIENTE SIMPLE 1..veeuvttitresseeesutesteeesusessseessssesseessssesssessssessssessssessnsesensassnsesssseesssessnsessnses 8
el o Te Vool o Ta MY [Yo [=] o Xe = [o e Xy USRS 8
TraAMIteS.......cvvveeeeeeeeccrvveaaann.
Flujo de Tramitacion
TIDO A8 EXPDEAIENTE ...ttt ettt e et s e e st e et e e st e s beeenseeebneenaeeens
INCORPORACION DE UN TRAMITE PROGRAMADO SIMPLE
Introduccion: Arquitectura de trAMITACIONueeeeeuveeeeeiiee e e eeeee e ctee e e ee e e s taaeesaaaeessaeaeestseaeessees 12
Formulario
L3014 o [T OO PP PP PSP OPPPP
Légica del tramite: Gestor de Interaccion VS Gestor de TramitaCioncccceeeeecveeeesieeeeiiieeeeiveaessannns 15
Gestor de INteracCion. DESCIIPCIONceueerueeerieeie ettt ettt et sate sttt e sateesiseesateenaneenaneens
GesStor de INteracCion. EJEMPIO............coc.eeevueereiesieeeeeeeet ettt ettt ettt sate et nateesineenaee e
Gestor de TramitacCion. DESCIIPCION.cccueereeerieeeit ettt ettt ettt et e site st ettt e sateesaseesateenaneenaneens
Gestor de TramitacCion. EJEMPIOcc...veeeeeeeeeeieeeeeee e ee e te e et e et a e e e e e et aa e e sasaaeesasssaeessseaessssees
¢Codigo 0 BBDD? Recomendacionesccccueeeeevuveeesireeeesivenennns
Gestor de interaccion o Gestor de tramitacion? Recomendaciones
INCORPORACION DE UN TRAMITE PROGRAMADO AVANZADOceeeeuurerersuureessueeesasuseeesassesssasseesssseeessnsseessssseessssseesssees
Integraciones oMo PArte del trAMILEccueeeecueeeeeeiee ettt e e ctee e stte e e st e e s stta e s steeesssteaenanaees
L (A= Lol To Kl AT =3 1 Lo (o KT
Uso de las parametrizaciones Cividas
ENVIO GE QVISOS Y COITOOSvvvaeieeeseieeeet e eeete e s teaeee e e ettt e e sttt e e s st tta e s asaaaesasstaesasteassasseaesasseaassasseasnssees
OTRAS UTILIDADES DE LA PLATAFORMA ...ceuveesuteeeuueesateeasessssesensessssesensessssessnsesssssssssssssssesssesssssesssssssssessesssssesssesssenes
INT@GIACIONES CON TEICEIOS ... asasasasasasaassssnsssasasssans
Extensiones de elementos: VENLAJAS Y FI@SGOS........ccccuuueeeeeeeeeiieiieieaeeeesssitteaaeeeesssssesaaeeesesissasaaeesssssssensans
Extensiones de menus y pantallascccceeeevvveeeecuvneennnen.
Acciones: Usos en Crons y Controles de Fechas
SUDProcesos VS ProCeS0S SECUNUAIIOSuueeeeuiseeeieeescieeeesctieeeeeteeesasstaesastesesasseassasseaesssssesssasseassasenasan
) (o TR0 Lo Y= S

28 Imatia

your innovation partner

IY] MANUAL

Creacion de un proyecto Cividas en Eclipse

Base de datos

Creamos la base de datos. Se importa la version actual de la misma.

Proyecto Eclipse

Creamos un nuevo proyecto Java:

-
@ New Java Project

o —— - - [D|El|g

Create a Java Project —
Create a Java project in the workspace or in an external location.

Project name: Ci\ridasExarane|

[¥] Use default location

Location: | CAIMATIA\workspace\CividasExample Browse..
IRE

() Use an execution environment JRE: J2SE14

() Use a project specific IRE: i2sdk1.4.2 15

@ Use default IRE [currently ‘jdk1.6.0_207) Configure JRES...

Project layout

':::- Use praject folder as root for sources and class files

(@ Create separate folders for sources and class files Configure default...

Working sets

Add project to working sets

Warking sets: | CividasEN-Related -|[select.

@ <Back || Net> |[Finish || cancel

A — = — — —

Incorporamos los archivos de propiedades. Las rutas y nombres de los mismos no tienen por que ser
estos, siempre y cuando se configuren correctamente (el lanzador del servidor apunta al
server.properties y luego unos se llaman a otros).

Archivos basicos

license.dat

25 Imatia

your innovation partner

IY] MANUAL

com/cividas/server/conf/server.properties
com/cividas/server/conf/locator.properties
com/cividas/server/conf/database.properties
com/cividas/server/conf/remotereferences.xml

Otros

com/cividas/server/externalbridge/
com/cividas/server/registryintegration/prop/
com/cividas/server/registryintegration/prop/mapping/

Se incorporan las librerias:
e (Librerias cliente VS Librerias servidor?

En la creaciéon del proyecto no es imprescindible hacer la separacién de librerias de cliente y de
servidor, aunque no sean siempre las mismas. Desde el desarrollo de Cividas si se hace sobre todo
por el hecho de que el nimero de librerias es bastante elevado y se hace necesario limitar al
maximo las librerias que se va a descargar el cliente.

En un entorno de desarrollo sobre Cividas no es tan necesario ya que, a no ser que se aporte un
numero considerable de librerias a mayores de las de plataforma, serd la propia plataforma la que
marque que va en cliente y que va en servidor.

e (Estructuracién en carpetas?

Al igual que con respecto al caso anterior, no es imprescindible la estructuracion en carpetas de las
librerias. En el caso de desarrollo de Cividas se hace por temas de organizacién, pero en cualquier
otro caso no es necesario.

4 ~
@ Properties for CividasExample Llﬂlﬂ—hj
ype filter tex] Java Build Path T T

Resource
Builders B Libraries | % Order and Export
CVSChangelog JARs and class folders on the build path:
Java Build Path =
Java Code Style w: activation jar - CividasExample/libs o Add JARs...
Java Compiler L alfresco-web-service-client-3.3.jar - CividasExample/libs
Java Editor wE* apache-mimedj-0.6 jar - CividasExample/libs L
Javadoc Location wE axis jar - CividasExample/libs 3
Ontimize Project l=2 bemail-jdkl6-145.jar - CividasExample/libs
Project Facets w? beprov-jdkl16-145 jar - CividasExample/libs
Project References [0 betsp-jdk15-1.43 jar - CividasExample/libs
Refactoring History njofz bduac.jar - CividasExample/libs
Run/Debug Settings 3 bsh-2.0b5 jar - CividasExample/libs
Task Repository (9 cividas.jar - CividasExample/libs
Task Tags {9 Cividaslconsjar - CividasExample/libs ;
Va.liqation I:oi? cividasnotifications.jar - CividasExample/libs Edit
WikiText wﬁ* cividasplugins.jar - CividasExample/libs Remove
I_oﬁ} CividasSara.jar - CividasExample/libs
IOE CividasSARADMLjar - CividasExample/libs Migrate JAR File
lo CividasScan.jar - CividasExample/libs
I:oi cividassigem.jar - CividasExample/libs
lms CividasSisnot.jar - CividasExample/libs
low cividastasks.jar - CividasExample/libs
wﬁ* cividasTaxes.jar - CividasExample/libs
wi ClienteXADES-1.0.7 jar - CividasExample/libs
w? commaons-beanutils-1.7 jar - CividasExample/libs
w:* commons-codec-1.2 jar - CividasExample/libs
'°'=° commons-codec-1.3.jar - CividasExample/libs
w? commaons-collections-3.1.jar - CividasExample/libs
w:* commaons-dbep-1.2.1 jar - CividasExample/libs
[@ commons-digester-1.7 jar - CividasExample/libs
@E’ commons-discovery-0.2 jar - CividasExample/libs
wE* commaons-httpclient-3.0.1 jar - CividasExample/libs il
Il im 1A iar CividacFvamnlalflihe
@ oK | [cance

Sy28 Imatia

your innovation partner

IY] MANUAL

En algunos casos, puede ser necesario crear proyectos paralelos en lugar de incorporar librerias. Es
recomendable, p.e. en procedimientos de integracion independizar el conector en si del uso que se
hace del mismo en la plataforma.

Es conveniente guardar los lanzadores en el propio proyecto, de forma que se puedan compartir
entre los distintos desarrolladores. Para ello en la pestafia Common tenemos la opcion de Local file /
Shared file. Eligiremos la segunda.

Existen por otro lado unas pequefias diferencias entre el lanzador del servidor y el del cliente.

Lanzador del servidor

El lanzador del servidor utiliza como parametro la ruta del server.properties utilizado. Las librerias
utilizadas pueden ser directamente las del proyecto sin mas, ya que el orden de las mismas no
deberia ser determinante (no siempre en las instalaciones podremos asegurar un orden en las
librerias del servidor

@ Debug Configurations

Create, manage, and run configurations

Debug a Java application

= —+,

S S" = 5T Name: Cividas Example Server

m @ Main ()= Arguments | = JRE| “=; Classpath @Source EEn\rironment »1
Bundle2SQL - Project:
Cividas Example Server CividasExample Browse...
CividasADIF-ORA-Client L
CividasADIF-ORA-Server 3 Main class:
CividasEN Client JNLP com.cividas.server. CividasServerLauncher Search...

CividasEN-Client NAT-HTTP
CividasEN-DEBUG-Client
CividasEN-Oracle-Client Include inherited mains when searching for a main class

Include system libraries when searching for a main class

CividasEN-Oracle-Server Stop in main
CividasEMN-OURENSE-5erver

CividasEN-PG-Client

CividasEN-PG-Server

CividasEM.W2.80-P3-Client ORA

CividasEN.WV2.80-P3-Client PG

CividasEM.W2.80-F3-PG-Client HTTP
4 [T b

(=1 =0 E D D D0 DD

Filter matched 173 of 197 items

|@/’| Debug] | Close

Lanzador del cliente

Los parametros de lanzamiento del cliente son los siguientes:
e Ruta del XML de etiquetas (com/cividas/client/cividaslabels.xml)
e Ruta del XML de arquitectura de formularios (com/cividas/client/clientapplication.xml)

628 Imatia

your innovation partner

IY] MANUAL

@ Debug Cenfiguratiens

=y

Create, manage, and run configurations

Debug a Java application

IR X|E -
type filter text

[cividas Example Client

Name: Cividas Example Client
@ Main [69= Arguments

Program arguments:

=i\ JRE | “%; Classpath T:/ Source EEnulmnment El Commaon

Cividas Example Server
CividasADIF-ORA-Client
CividasADIF-ORA-Server
CividasEN Client JNLP
CividasEN-Client NAT-HTTP
CividasEN-DEBUG-Client
CividasEN-Oracle-Client
CividasEN-Oracle-Server
CividasEN-OURENSE-Server

mn

VM arguments:

com/cividas/client/cvidaslabels.xml
com/cividas/client/clientapplication.xml

CividasEN-PG-Client
CividasEN-PG-Server
CividasEN.V2.80-P3-Client ORA
CividasEN.V2.80-P3-Client PG
CividasEN.V2.80-P3-PG-Client HTTP
CividasEN.V2.80-P3-5erver ORA
CividasEN.V2.80-P3-Server PG
CividasEN.V2.90-Oracle-Client
CividasEN.V2.90-Oracle-Server
CividasEN.V2.90-PG-Client
CividasEN.V2.90-PG-5erver
CividasENOCRServerLauncher
CividasENPontevedra CLIENT
CividasENPontevedra SERVER
[T cividasMore-Client
Filter matched 174 of 193 items

@

‘Working directory:
(@ Default:

() Other.

HHGEHEEIHEGAEEHEEGE D= EEE

Sqworkspace_locCividasExample}

orkspace... FEile System... Variablgs...
[Apply] [Revert]
[Debug] [Close]

En el caso del cliente, el orden de las librerias si que tiene una cierta importancia y, de hecho, en las
instalaciones se puede especificar (el orden es el indicado en el JNLP). Para simular esta

circunstancia, las librerias deben ser anadidas UNA

a UNA,

Por tanto desde la pestaia Classpath haremos lo siguiente:
e Eliminar la entrada por defecto (que apunta al proyecto completo)
¢ Afadir el proyecto pero desactivando todas las opciones

@ Project Selection

Choose project(s) to add:

'[J_'—'/J'CividasExample

D '[J_'—‘/J'CividaslconsDefault
D 'lb‘JCividasImport

[0 1= CividasNatification
D 'b‘JCividasPlace

D 'b‘JCividasPostgrEEOracle
[T:JCividasSARA_DNI_JWS
|:| 'b‘JCividasSara

Dadd exported entries of selected projects.

,/Diﬁdd required projects of selected projects.

@ [

e)]
Select All | | Deselect Al
QK] [Cancel]

e

e Afadir el conjunto de librerias de forma independiente. Esto nos permite particularizar el
orden de las mismas. Deberia ser el mismo que el indicado en el JNLP. Por otro lado la
referencia al proyecto deberia estar ARRIBA de todo, ya que se supone que completara lo
proporcionado por la plataforma, por lo que su codigo deberia tener prioridad sobre el de la

plataforma.

7/28

Imatia

your innovation partner

IY] MANUAL

Creacion de un nuevo expediente simple

En primer lugar crearemos un nuevo tipo de expediente muy sencillo desde la propia aplicacion.
Posteriormente se ira complicando.

Sin embargo, antes de entrar de lleno en ello, haremos un breve resumen sobre la arquitectura del
proceso de tramitacién en Cividas.

WFPROCESSTYPES \
Workflow # PROCESSTYPED
3
. WFTASKINSTANCECIVIDAS +
WFPROCESSVERSIONS ~ 7 IDTASKINSTANCE
VERSIONTYPED 7 IDPROCESSINSTANCE
*
3
P
WFPROCESSINSTANCE - WFTASKINSTANCE -
§ IDPROCESSINSTANCE 6————— @ SINGLEKEY
" Ca—
.
 TPROCEDURES = TATTACHMENTDATA
Expediente ¥ IDPROCEDURE ‘ IDATTACHMENTDATA
[.
TPROCEDURETYPES -
¥ IDPROCEDURETYPE . .
| __g/TTASKS -
— 7 IDTASK
T IDTASKDATA (FK) .
3 .
TTD_DEFAULTTASKDATA ~ o Descri
7 IDTASKDATA

TTASKREQUESTS *

T IDTASKREQUEST .T

TTASKTYPES
? IDTASKTYPE T .
TTASKHISTORY =
IDTASKHISTORY
TTASKCLASSES bt
(# IDTASKCLASS
.+ der | AVAILABLETASKFORMSHISTORY =
De;? f'{IC (;ﬂ # IDAVAILABLETASKFORMHISTORY . AVAILABLETASKFORMS - | J
ramité | prask (rq) P 7 IDAVAILABLETASKFORM e <
? IDTASKDATA (FK) TTASKGROURS =
t W IDTASKGROUP
<
idetoath ol o il T AVAILABLETASKMANAGERS = l.
¥ IDAVAILABLETASKENTITY <o
W IDAVAILABLETASKMANAGER <

Este esquema es simplemente un resumen de las tablas principales que intervienen en el proceso de
tramitacion. Se han ignorado tanto las relaciones con otras tablas del sistema, asi como todas las
posibles tablas que formarian parte del modelo de datos de los distintos tipos de tramites (hemos
puesto exclusivamente la tabla de datos por defecto.

Antes de nada, hay que definir los tramites que van a formar parte de nuestro expediente. En
principio solo tendra un tramite, por lo que lo damos de alta.

28 Imatia

your innovation partner

IY] MANUAL

En el proceso de alta del tramite, tendremos que definir su formulario y su entidad asociada. En este
primer ejemplo no tendremos ningun tipo de légica adicional por lo que en la mayor parte de

configuracion dejaremos las opciones por defecto.
Definimos su entidad con cinco campos:
e Nombre del menor de tipo texto
Edad de tipo entero
Tipo de colegio de tipo texto
Coste del colegio de tipo moneda
Hora de la ultima operacién de tipo texto

Asistente creacion formularios

@ Navegacion

Paso 1:

-Indique o nome e descripcidn do Formulario

-Seleccione uha entidade se desexa asodar o
novo formulfario 3 unha entidade xa existente

Tipo de formulario Expedientes Sociales

Nome formdatosmenor

Descripcidn Captura de datos del menor

Formulario de tipo de trémite

Xestor de Interaccidn com.cividas.tasks.Default TaskFormManager

Entidade asociada

O Seguinte

3 Cancelar

Asistente creacion formularios

@ Navegacion

.

I

\ Paso 2:

-Creacion de campos do formulario
se non se asociou unha entidade no paso previo

-Seleccione o tipo da entidade nova que se creard

Tipo Entidade Expedientes Sociales
Nome da entidade eformdatosmenor

Descricidn eformdatosmenor

OXeEEEr{EIBUIE®

ND| Mome do campo | Tipo de dato | Tipo de campo Campo equivalente

QAo

Tramite

_1| nombremenor TextDataField

_2| edadmenor IntegerDataField
iltipocnlagio TextDataField

il costecolegio CurrencyDataField
_5| horaultimaoperacion TextDataField

-

:, Anterior O Seguinte

3 Cancelar

De momento dejaremos los campos tal cual nos lo propone el editor.

9/28

Imatia

your innovation partner

IY] MANUAL

c =
Asistente creacion formularios i
@ Navegacion I
. h* . 3 - L
- : 1 I
T[7% |
PASO 1 PASO 2 PASO 3

o — [Tramites A=
" campo |
" Contenedor m
B soton Datadotrsmte | | .
horaultimaoperacion |
costecolegio |
tipocolegio |
edadmenar | B
nombremenor |
Observacions
< i >
Editor Formularios | Editor XML @ Cubre os campos regueridos.

’ () Anterior ” @ Fin ” 3 Cancelar]

Con este tramite ya creado y con su formulario correctamente asociado, definimos el flujo de
tramitacion. Como estamos ante un ejemplo simple, este flujo tendrd unicamente el tramite que
acabamos de definir.

0728 Imatia

your innovation partner

IY] MANUAL

o R R e
Rexistro Tramitacion Def

on de Proced tas BDUAC Mesti Ad

i6n Pref ias de Usuaric Axuda

anp - .@w\m%Otfﬁﬁ\ LRGN ESE® =G|

| Clases de fluxo (1) 4
20 sociaL | Asuntos sociales M & & & Tipos de fluxo @ &

| @ consuttar [insertar (@l Actualizar [g} Eliminar

E-J0 Tipos de fluxo (1) o
L AYESC | Ayuda Escolar @ Informacitn ipo de fiuxo

. Tipos de fluxo (0) Clase de fluxo |SOCL"-\L ||Asunt05 Sociales | []

. Subprocesos (0) q
Cdd. tipo de fluxo Tipo de fluxo |Ayuda Escolar |
Dispofiible como subproceso Listo para uso
Desefio de fluxo | Tipos de expedientes

Tipos de tramites

—— D@88 EELHOD @ MG brmen

Ne|Cod. grupo...

2. Captura de Datos del Menar]

] 1 | 3

@ Lista de subprocesos

="

[Usuario: demo - Perfil: null - Servicio: ADMIMISTRACION: ADMINISTRACION DE LA PLATAFORMA]

STRACIO EEERIN

Utilizaremos este flujo para nuestro tipo de expediente:

ot CIVIDASV2.91-P6

Rexistro Tramitacion Definicion de Procedementos Ferramentas BDUAC Mestres Administracién Preferencias de Usuario Axuda

KL XL SEAALY ES=9 % I IF Ty,] el

. Clases de expedientes (1) 4 B & E 3 ;
| SOCIAL | Asuntos socales » 000 .[-I_|D05 de exped|ente II E & ¢ | 8 consuter B Insertar @ Actualizar [} Elminar

=11 Tipos de expedianta (1) | | (Ciase de expediente [sociaL || Asuntos socles |2 @ -
- Y | Ayudas Escola
. Tipos de expediente (0} Cdd. tipo de expediente Tipo de expediente |Awdas Escolares |
Entidade Administrativa | Ao q
) =) - loc)
Publicable en WEB Tramitable en Web Ve T AT

| Verfficacidn documental | Verificacidn documental web | Estado | Tipos de tramites frecuentes | Control de datas | Exportacion |
Guia de tramitacién | Campos do formulario asociado | Modelos do tipo de expediente r Permisos a tipos de expedientes

|AYESC Ayuda Escokr |2\ @ 2

DFEEEY FTE"

Inicio >

2, Captura de Datos del Menor]

Selecconar tipo de fluxo

“ . | r

IHQQ@I

- Imatia

your innovation partner

IY] MANUAL

Incorporacion de un tramite programado simple

Antes de meternos de lleno en la programacion de los elementos que forman parte del tramite,
haremos un breve resumen sobre la arquitectura del proceso de tramitacion:

CLIENTE

i

[

‘|I|l|
[S———1

Y (DerForm) A (Form1) 4 (Form_X) & (Form_Y)
: : : :
' ¥ H
' ! { i
- : ¥ 1
' !
i i FIM1 FIM2 ! lagtbxecution
; [" vou setDataboony
] i E oo setvaOutaose
i \ ! VORY CAF GOl HOM Rt e
i 3 | ErctpRonst doTasA sy
! a | ErctpRoss? cassaTasma chony)
L] | HANVIH O TamFONTOWRBOcsass i Tabvs)
ErctpRos sarDatadnall Tesk OMOMGuoa)
DefaultTaskFormManager ErcupRanst et ToAcEon)
e .J
%3 Psideg, A
.. .\ . —_— .
LY \ G '
aa ' L \
Sanl [Somy 1
Y i B
LN ' Rt
SERVIDOR A] Temes iz [TsstNanagesRelerence
"_‘ ‘-“ 3 ITashAw N gorT ook Maseger
% | |RemoteReferencelocator PR Ao
2)
g Ny
¢ SN |
1 .
3 b
‘-‘ ‘u—-.::::: Y g qEE——
3 ST mmes SSnTmnz sl TaskMansgerfeferencel ocatere
A TeshMaayssinivence (o TowMaeoperRudinece]
x TaskManagerReferew
i : ¢
)
i
.
A
.
L)
b L S O S i e
MaskManagurExesution Tl llaskUenager
EnttRons foTom
bwn.--n nr.-:::a X TaskManager :»:.;::s‘::mﬂmm. Hasatio IO,
W samonkt Comswedon con) ERon s s Tash
EnvrpMesal dolast o A SN 20k P, Haseath 13 sA0Ne,
s Mawf s o seson\y
samanky Costwrdor EnttRons gutTeshlat
Eripfosa Ledo TisbActooy o PHESEAAME Ak T, W S saekl)
basif " EnttRons savo Tk Daty
W smmonki Contwctor con) ’ v 0
u&’nﬁ‘ Defau“Tas‘(Mﬂﬂagef TM-X W-Y :b:'::\.s‘:‘\m%qv 5, Hasvate Basilue,
Aansf ERon e st Tash
WV sasmaakt Convwolion con) 2 ISR Ak Ty, FOMCR0R 1O,
Entrptesal put TaokDvia ’ ' [‘ A SRy
o smmorki Canewchon conl g ; . i v
EnipMasot seve Tk Dvle =
S furania, / 2
W smmorkt Casswedoe con 3
Loy gt VA Basorpdon - 22 P 3
o & (Entky3) (Enftyz) (Entity_X) (Entity_Y)
W samonkd. Casewchon con) - .

Lo primero que haremos sera colocar los campos del formulario. Podemos hacerlo desde la

aplicacion utilizando para ello el editor:

12/28

Imatia

your innovation partner

Una vez que lo tengamos podemos

IY] MANUAL

o« Captura de datos del

{Captura de datos§| Documn'mcﬁnl

Data do tramite

nombremenar

edadmenor

tipocolegio costecolegio

horauttimaoperacion

Observacions

% Finalizar tramite

@ cancelar

“sacarlo” de la base de datos y llevarlo al cddigo. Para ello

copiamos el XML de definicion del formulario y lo llevamos a nuestro proyecto:

D04/e20 0 Formularios NE S ¢ |

B consuttar [Insertar (@l Actualizar [} Eliminar

@ Definicion do formulario

Tipo de formulario |Expedientes Sociales | C\ [x]
Categoria do formulario [Formutano de trdmite -

Nome |formdatosmenor |
Descripcidn |Captura de datos del menor |

@ XML do formulario

Xestor de Interaccidn |com.mv»dm.tmm.DefaultkaFomManager

Lanzar asistente

Crear XML

Volcar XML 2 editor

Entidade asociada |eformdatosmenor |q [x]
Ruta do XML [| R
Borrar XML
XML do formulario | HTML do formulario | Histérico | Exportacién de formulario
» Seleccidn 7 <IntegerDataFisld at ~l|= ': Form I
P g <IntegerDataField at idtask" wisible="no"/ = il Column
£ e 9 <IntegerDataField at idtaskinstance” visble="no" =
| B Novo Formulario ||| 10 <TextDataFleld attr="subprocesspath” viskle="na"/>
11
7 campo 12 =TextDataField attr="tasktvpecode" labelsize="15" wisi
= 13 <Row title=""»
Contenedor 14 «TextDatarield aign="left" attr="taskty|
— 15 = R
Boton 16
17 =TabPanel expand="yes "=
13 =Tab title="data"> =
19 <Calumn:
20 <DateDataFieldEnhanced
21 < TextDataField align="left" attr="rombr
22 | zIntegerDataField align="left" attr="edadmenor" dim="text" enabled="yes" labelsize
23 | <Row>
24 | <TextDataField ali “left" attr="tipocolegin” dim="text" enabled="yes" labalkize="
25 | =CurrencyDataFisld align="left" attr="costecolegio” dirm="text" enabled="yes" lateh)
26 | «Rows s
27 | < TextDataField dign="left" attr="horaultimacperacion” dirm="text" enabled="yes" la
28
9
20
31
32 <R expand="yes" title:
f2s] «MemoDat.
34 = [Rows
s < fCalumn:
k' =« iTahw A2
4 [[r

Editor Formularios| Editor XML

13/28

|g| Cubre os campos regueridos.

Imatia

your innovation partner

IY] MANUAL

'8} Java - CividasExample/sources/com/cividas/tasks/ayudasescolares/datosmenar/formd orxml - Eclipse ™ (o[B e
File Edit Source Refactor MNavigate Search Project Bun Design Window Help
CheEHEE G~ F-O"QLr FEr &2 2 ﬁaDTeamSynchr...i}kDebug
SR R -RCREE
ﬁ WE ﬁ B e TypeHierar| = O |[[formdatosmenorxml & =E ﬂ =0
= . v 1= < 7xml version= "1.0"encoding= T50-8859-1 % =«Form buttons= o "keys = Tdorocedure idtask "title= Tasgks™ « @ s B
= | = 2a8 <Column expandlast= ho = = &
[‘j_;é »CividasEN [10.7.0.3] 3 <IntegerDataField atir= Tprocedure "visible= Tio 7= 7 xml
e 4 =<IntegerDataField attr= Tgproressinstance "visible= fe T=
4 = Cividasbample 5 <IntegerDataField attr= Tgbroceduretype "visible = o T> €] Form buttc
4 [sources [<IntegerDataField attr= brocesstypeid "visible= o T> [e] Columi
£ (default package) 7 <IntegerDataField atir= Tiaskiype "visble = fo >
wid & <IntegerDataField attr= Totask "visible= ho 7=
4 B com.cividas g <IntegerDataField attr= Totaskinstance "visble= o T
b H2 client a <TextDataField attr = Tubororesspath "visible= fo =
.conf !
b £ server.con 2 <TextDataField attr = taskéypecode "labelsize = "25 "visible = e T> <TextDataField attr= fro
4 2 tasks.ayudasescolares.datosme 13 <Row title="=
| [%] furmdatosmenor.xml\ 14 <TextDataField align= Teft "attr = taskfypename "dim= "tex¢ "enabled= ho "labelvisible = T 7=
=| license.dat }g <fRow>
1> = JRE System Library [jdi1.6.0_20] 172 <TabPanel expand= yes =
1> = Referenced Libraries 185 <Tab title= "tz "
it 198 <Column
= 20 <DateDataFieldEnhanced align= Teft "atlr = tastulsfadafe "labelsize = 75 reference= s "
1% .classpath 218 <Row >
%] project 22 <TextDataField align= Tert "attr = hombremenor "dim= Fext labelsize= "15 Tabelvisible = Jes T= b
=g, - < n r
1= Cividas Example Client.launch
= Cividas Example Serverlaunch Design M d \II >
E_g Problems (@ Javadoc (@ Declaration (/@ Search (E Console &2 =g
Cividas Example Client [Java Application] C:\Apps\DevelopmentiJavaljdil.6.0_20\bin\javaw.exe (07/03/2012 11:22:43)
X BHEEE B
4 e 13 1 L4
o® formdatosmenor.xml - CividasExample/sources/com/cividas/tasks/ayudasescolares/datosmenor
—

Tendremos que tener en cuenta que ahora la definicion del formulario cambia. Dejara de ser el XML
en base de datos para ser el XML en cddigo. Para indicar esto, debemos desde la aplicacion Borrar el

XML e indicar la ruta del mismo en el cédigo:

r —
o N p— e o« ==
I
0220420 @ Formularios [& ¢ | B consutter B Insertar @ Actualizar [} Elminar
@ Definicion del formulario - =
Tipo de formulario Formulzrios de proba 4
e | E |C\ o Lanzar asistente
Categoria del formulario [Formutano de tramite v]
Hombre |formdatosmenor | =
Descripcidn |Datos ‘del menor solicitante | Crear XML
@ XML del formulario E
Gestor de Interaccidn |(om.(Mdm.imks.DafaultkaFurmManager | Volcar XML a editor
Entidad asociada |[)atus del menor |C\ [x] { §
'; Ruta del XML |(on‘u‘(wldasjmsks,‘ayudasesmlaresjdatnsmenor,‘furmdatosmeﬂur.xml | Ver form
| ™
I Borrar XML
|| XML del formulario | HTML del formutaml Hsténcol Exportacion de formulario
i
[||* seleccion 1
|| Refrescar S\
[
| B8] Nuevo Formulario 4
i k] E
||| campo e =
(|) 7
||| = crF 8
M iz ca lculad H £
I V& Campo calculzdo 10
») Casila de verfficacidn 11
|| 12
||| £ Moneda 13
B | et 14
| Fecha =
M |\ HourDateDataField 16
| 2 17 Propiedad Valor
| contenedor ig
(# cardpanel |l 20
(| 21
| |22 collapsiblepanel o2
=Ml =23
| [Column 54
M | Grid 25
i 26
|| Bl Row 27
f1[=: 28
| Scroll =
Boton ‘ - 7]
‘ Editor F Editor XML | [[] Rellena los campos requeridos 8

14/28

Imatia

your

innovation partner

IY] MANUAL

La entidad también nos la vamos a “traer” al cddigo. Para ello el mecanismo sera similar:
e Creamos un properties en codigo.
e Llevamos los atributos que originalmente estaban en base de datos.

¢ Indicamos la ruta del properties de la entidad en cédigo.
Entidades @

199/199 [Deﬁnicién de Entidades = S ¢ | B consuttar Insertar actualzar [l Elminar

@ Parametros de la entidad
Tipo Entidad BienestarSocil.Informes (]

Nombre de fa entidad edatosmenor

Descripcion Datos del menor
| Ruta de clase
2uta del properties com/ cividas/tasks/ayudasescolares/datosmenor/edatosmenor.properties
/" Entidad de tipo de trdmite # Volcar propiedades
Definicion de la Entidad| Fichero de Propiadades | Scripts asociados | Elementos asociados|
N == B T = FEL R
BIECIEINEEEE 0
N°| Propiedad | Walor :
ﬂTablE ttd_edatosmenor -
ﬂAutonumer\cal idtaskdata
ﬂ Keys idtaskdata
ﬂTemplateQueryKeys idprocedure;idprocessinstance
ﬂculumns costecolegio;edadmencr;nombremenor;tipocolegio;idprocedure;idprocessinstance;idtask;idtaskdata;taskdatadate;tasko...

Tenemos en el tramite dos puntos en los que afadir légica particularizada: El Gestor de Interaccion
y el Gestor de Tramitacién. ¢Cuando afadir la légica en un punto o en otro? Depende.

A grandes rasgos el Gestor de Interaccién incorpora la légica de cliente, que debe ser lo minima
posible y limitarse, digamos a cuestiones de interfaz grafica, esto es:

e Operaciones basicas sobre los campos: Activar/Desactivar, Mostrar/Ocultar, comprobar
valores, volcar valores, etc.

e Otras funcionalidades del tramite que requieran la intervencion del usuario, p.e. nuevos
botones

El Gestor de Tramitacion incorpora logica de negocio del lado del servidor. Todas las operaciones
con cierta enjundia deberian implementarse en este punto, ya que generalmente los equipos
servidores son mas potentes y estan mejor dotados para realizar operaciones mas pesadas. Las
integraciones son un buen ejemplo de funcionalidades que, a toda costa, deberian implementarse en
el lado del servidor.

Como se comentd anteriormente, este primer tramite hasta el momento solo tiene la ldgica por
defecto. Lo que vamos a hacer ahora es incorporar algunas comprobaciones de cliente.

Para ello crearemos en cddigo nuestro gestor de interaccién. Es imprescindible que este gestor
extienda del gestor base:

com.cividas.tasks.DefaultTaskFormManager

para no perder nada de la légica estandar del tramite.

Este gestor base implementa una serie de interfaces con un importante conjunto de métodos para
distintas funcionalides. No creemos adecuado en este punto empezar a describir uno por uno todos
estos métodos, dado que seguramente sea mas grafico y comprensible analizar la sucesiéon de

15728 Imatia

your innovation partner

IY] MANUAL

acontecimientos en las operaciones basicas del tramite: Abrir el tramite, Finalizar el tramite, Guardar
datos, Cancelar:

Abrir el tramite

Un tramite puede tener distintos origenes: Una tarea del WF, la tabla de tramites pendientes, el
historico, la tabla de tramites libres. Cada uno de estos origenes proporciona una informacion
determinada distinta que, entre otras cosas, nos ayudara a saber como tenemos que abrirlo.

Lo que se hace en origen para abrir un tramite es llamar al método:

public void loadFormManager(Hashtable taskFormParameters, IMassiveDoTask parentClass,
Component parentComponent) throws Exception

por lo que este es el primer punto de entrada a la logica de cliente del tramite. Dentro de este
método se hace lo siguiente:

1/ Inicializacion de parametros.
Limpiar los parametros para reniciarlos:

public void clearTaskParameters();

2/ Carga del contexto

Se carga el contexto del tramite con los parametros que nos llegan directamente del origen de la
llamada.

public void loadTaskContext (taskFormParameters);

Este método a su vez realiza una llamada remota que recupera la informacion basica del tramite (si
ya ha sido ejecutado, si el usuario tiene permisos sobre él, etc., asi como los datos del mismo.

3/ Modo inicial
Se establece el modo inicial de apertura del tramite
public void setInitialMode()
3.1/ Discrimina si el tramite es nuevo o ya tiene datos
3.1a/ Si ya tiene datos, se llama a:
public void setDataMode()

que se encarga de rellenar el formulario con los valores por defecto procedentes de la
parametrizacion particular y con los procedentes del contexto antes mencionado.

3.1b/ Si no tiene datos se llama a:
public void setNoDataMode()

que se encarga de borrar el formulario y rellenarlo con los valores por defecto.

3.2/ Comprueba si tenemos ID de tramite o no y en funcion de eso llama a sendos métodos que
efectlia las acciones implementadas para ambos casos

public void checkTaskIDActions()

3.2a/ Método llamado en la primera ejecucion del tramite:

public void setStatusFirstExecution () throws Exception

3.2b/ Método llamado en las siguientes ejecuciones del tramite:

public void setStatusAlreadyExecuted () throws Exception

6728 Imatia

your innovation partner

IY] MANUAL

3.3/ Refresca todas las tablas del formulario. Si se quiere excluir alguna de ellas habria que
sobrecargar el método getExcludedTablesToGenericRefresh() que devuelve un Vector con los
atributos de las tablas que NO se tienen que refrescar por defecto.

3.4/ Deshabilita los campos procedentes del modelo del expediente. En la consulta de datos del
tramite hay un conjunto de valores que no son del tramite sino del expediente, y que se devuelven
por comodidad a la hora de mostrarlos en un formulario de tramite. Estos campos tienen el prefijo
“procedure$nombre_del_campo” y NO son modificables bajo ninguna circunstancia desde el tramite.

3.5/ Comprueba si se trata de una ejecucion masiva

4/ Apertura en modo lectura

Se realiza la comprobacion de si el formulario debe ser abierto en modo lectura y se efecttan las
modificaciones necesarias en el comportamiento del mismo si procede:

public boolean openInReadOnlyMode()
En la version Cividas.V2.91, la Unica condicion para abrir el formulario en modo sélo lectura era que
el expediente estuviese archivado. En la version Cividas.V2.95 ya se permite especificar permisos de

lectura y escritura por grupo de usuario. En cualquier caso, se trata de un método que se podria
extender para:

e Establecer condiciones alternativas para determinar si el formulario se abre en modo sdlo
lectura o no

o Implementar acciones alternativas en el caso de que el formulario esté en modo sélo lectura.

5/ Captura del token

Para evitar el acceso simultaneo a un mismo tramite, el usuario que lo abre captura un “token” que
provoca que el tramite esté deshabilitado para cualquier tipo de acceso mientras el usuario lo tenga
abierto.

public Object catchTaskToken(Object idtask, Object singlekey, Object idprocedure) throws
Exception

6/ Visibilidad del formulario

A continuacién se hace visible el formulario. Se trata de una operacién que, por sus caracteristicas,
no es extensible.

7/ Liberacion del token

Una vez se han realizado las operaciones necesarias con el tramite se regresa a este punto para
liberar el “token” capturado previamente:

public void freeTaskToken (Object idtasktoken) throws Exception

Finalizar el tramite

La finalizacion del tramite se realiza a través de un botdn con una clave determinada que tiene un
escuchador particular que acaba llamando a un método concreto del gestor de interaccion basico.
Cualquiera de estos elementos pueden ser sustituidos o extendidos. Desgranandolo con mas detalle,
tenemos:

Boton de finalizacion del tramite:
Button bDoTask = managedForm.getButton(BUTTON_DO_TASK);
Escuchador de finalizacion del tramite:

DoTaskListener doTaskListener = new DoTaskListener(managedForm);

17728 Imatia

your innovation partner

IY] MANUAL

Accion que se ejecuta desde el escuchador:
public EntityResult doTaskAction() throws Exception

En general, a la hora de extender la finalizacidon del trdmite lo conveniente es centrarse
exclusivamente en este Ultimo elemento, ya que hacerlo con el botén o el escuchador complica un
poco mas la légica y no aporta demasiado.

Dentro de la extension del método hay 4 puntos fundamentales:
1/ Previo a la llamada remota
En este punto se puede hacer uso del método:
public void appendToTaskParameters(Object key, Object value, boolean overwrite)
para anadir nuevos parametros
y también de:
public Hashtable getTaskFormData(boolean includeTables) throws Exception
para anadir nuevos valores a los datos del tramite
2/ Llamada remota
La extension en este punto se llevaria al servidor y se explicara en el siguiente apartado
3/ Posterior a una operacion correcta
Se puede extender el método:
public void postTaskDoneActions()
para indicar las acciones a tomar tras una finalizacién de tramite correcta

4/ Posterior a una operacion independientemente del resultado

Si lo que se desea es efectuar una operacion tras la finalizacion del tramite, sea cual sea el resultado
del mismo, el método a extender seria:

public void postTaskActions() throws Exception

Guardar datos

La operacion de guardar datos es totalmente equivalente a la de finalizar el tramite salvo por el
detalle de que el botdn, el escuchador y el método son distintos, légicamente. Asi, tenemos:

Button bSaveData = managedForm.getButton(BUTTON_SAVE_DATA);

SaveTaskDataActionListener saveDataActionListener = new SaveTaskDataActionListener
(managedForm);

y el método a extender:
public EntityResult saveDataAndDoTaskOutOfGuide() throws Exception

Los putnos de extension son los mismos que en el caso anterior, con la salvedad de que no hay un
método propio para el retorno tras una operacion correcta (serian, en todo caso, los ya mencionados
loadTaskContext y setInitialMode para hacer un “refresco” del formulario. Asi tenemos:

1/ Previo a la llamada remota
En este punto se puede hacer uso del método:
public void appendToTaskParameters(Object key, Object value, boolean overwrite)
para anadir nuevos parametros
y también de:
public Hashtable getTaskFormData(boolean includeTables) throws Exception
para anadir nuevos valores a los datos del tramite

2/ Llamada remota
La extension en este punto se llevaria al servidor y se explicara en el siguiente apartado

o728 Imatia

your innovation partner

IY] MANUAL

3/ Posterior a una operacion independientemente del resultado

Si lo que se desea es efectuar una operacion tras guardar los datos del tramite, teniendo en cuenta
que previamente ya se ha “reseteado” el formulario, tendriamos que sobrecargar lo siguiente:

public void postTaskSaveActions() throws Exception

Cancelar

Por el momento no entramos en este punto, ya que su importancia es menor.

Problema 1

El tipo de colegio debe ser un combo y no un valor de texto libre

Solucion 1

]

Problema 2

El ejercicio consiste en crear una etiqueta que se muestra cuando solo cuando se ejecuta el tramite
por primera vez.

Solucion 2

]

Como en el caso de los formularios, para la implementacion de la légica de servidor también se
dispone de una clase base de la se recomienda extender, no ya solo para disponer de la
funcionalidad basica de tramitacion sino para tener implementaciones por defecto de los métodos
impuestos por las interfaces necesarias.

Esta clase es:

com.cividas.tasks.TaskManager
Al igual que en el caso anterior, se estima que es mas adecuado describir el proceso de tramitacién
que cada uno de los métodos de las distintas interfaces implementadas. Cabe resaltar que la mayor
parte de los métodos que se van a mencionar de aqui en adelante tienen su versién con parametro

de conexién y sin él. En caso de sobrecarga, se recomienda siempre hacerlo con el método con
conexion, aunque, claro esta, para todo hay excepciones.

Recuperar el contexto / los datos del tramite:

Hay un método fundamental en este sentido:

public TaskContext getTaskContext(Hashtable taskParameters, int sessionID,Connection con)
throws Exception

Ya se ha hablado de este método en el apartado anterior. Lo que hace en su interior es lo siguiente:

1/ Comprobacion de permisos

Comprobar si el usuario tiene permisos de ejecucion (Cividas.V2.91 o de ejecucion y lectura
(Cividas.V2.95):

e Método deprecado (en Cividas.V2.95) de comprobacién de permisos de ejecucion:

protected boolean hasExecutePermission(Object idtasktype, int sessionID,Connection con)
throws Exception

e Método de comprobacion de permisos generales (lectura y escritura):

o728 Imatia

your innovation partner

IY] MANUAL

protected Hashtable getAccessConfiguration(Object idtasktype, int sessionID, Connection con)
throws Exception

2/ Datos de la instancia del tramite
Obtener los datos a nivel de instancia del tramite:

public Hashtable getTaskInfo (Hashtable tParameters, int sessionID,Connection con) throws
Exception

es decir, IDs de relacion con otros elementos, asi como los datos de la instancia del tramite (si es
que existe).

3/ ID de la tabla de datos
Obtener el ID de los datos del tramite en la tabla correspondiente:

public Object getIDTaskData (Hashtable parameters, int sessionID,Connection con) throws
Exception

4/ Datos del tramite
Obtener los datos del tramite en dicha tabla

public EntityResult getTaskData(Hashtable taskParams, int sessionID, Connection con) throws
Exception

Realmente se hacen tres consultas para alimentar el Unico EntityResult que se devuelve:
o Contra la tabla de datos del tramite

e Contra la tabla de datos basicos del expediente (agregando el prefijo “procedure$” para
idenficarlos).

e Contra la tabla del modelo de datos del expediente (agregando el prefijo “procedure$” para
idenficarlos).

Finalizar un tramite

El método principal es:

public EntityResult doTask (Hashtable taskParameters, Hashtable taskData, int sessionID,
Connection con) throws Exception

sin embargo, NO es este el método que se recomienda extender para realizar operaciones
alternativas en un tramite. En el proceso de descripcion de su funcionamiento interno se intentara
mostrar por qué y cual es el mejor punto para extender.

En este método se hace lo siguiente:

1/ Comprobacion de ejecucion a través del WF

Se efectUan las comprobaciones y modificaciones necesarias en los parametros de entrada para
preparar la posterior interaccion del tramite con el WF.

public void manageTaskIntoGuide(Hashtable tParams, int sessionIld,Connection con) throws
Exception

2 / Comprobacion de los permisos de lectura/ejecucion:
...con las consideraciones hechas sobre las modificaciones en la version Cividas.V2.95

protected Hashtable getAccessConfiguration(Object idtasktype, int sessionID, Connection con)
throws Exception

Puede considerarse este método redundante con respecto a la llamada que se hace en la obtencion
del contexto. Sin embargo hay que tener en cuenta que los tramite se pueden ejecutar ad hoc sin
necesidad de pasar por sus formularios, por lo que es necesario realizar la comprobacion de
permisos siempre que llegue una peticion de ejecucion

3/ Preparacion de los parametros del tramite

Aunque el grueso de parametros nos llega en la propia peticion, existen una serie de campos que se
afaden o modifican tras la peticién. Por ejemplo:

e El usuario que ha ejecutado el tramite
e La fecha de ejecucién

2028 Imatia

your innovation partner

IY] MANUAL

e EIl ID dentro del histdrico de formularios al que va a quedar asociada la instancia actual.
e etc.

public void setTaskParameters (Hashtable taskParams, int sessionID, Connection con) throws
Exception

4/ Gestion de la interaccion con las tablas de tramitacion
Se efectlan las operaciones necesarias sobre las tablas de tramitacion:
e Tabla de instancias de tramites
e Tabla de histérico de ejecuciones.

public EntityResult manageTaskTablesActions(Hashtable taskParams, Hashtable taskData, int
sessionID, Connection con) throws Exception

5/ Almacenamiento de los datos del tramite
Teniendo en cuenta si se trata de una insercién de nuevos datos o una actualizacion de los datos ya
existentes.

public EntityResult manageTaskData (Hashtable taskParams, Hashtable taskFormData, int
sessionID, Connection con) throws Exception

6/ Ejecucion de las tareas propias del tramite cuando éste se finaliza
Este es el método principal a la hora de sobrecargar un tramite. El 80% de la ldgica particular de los
tramites deberia estar localizada aqui.

public EntityResult doTaskActions(Hashtable taskParameters, Hashtable taskData, int
sessionID, Connection con) throws Exception

Este método no tiene ninguna implementacion base, es decir, por defecto “no hace nada”, por lo
que se deja total libertad al programador para que monte en este punto las funcionalidades que
considere oportunas.

Por otro la localizaciéon del método dentro del proceso de finalizacion del tramite, aparentemente “en
medio de todo” tiene su razon de ser:

e (Por qué no se incluye antes? Porque es en este punto en el que disponemos de toda la
informacion necesaria sobre el tramite ejecutado de las tablas de base de datos (su ID de la
tabla de tramites, de la tabla del histérico, de la tabla de datos, etc)

e (Por qué no se incluye después? Como la mayor parte de la logica pesada estara aqui
localizada, parece ldgico pensar que la mayor parte de los errores (deseados o no deseados)
se produciran en esta parte. No tendria sentido, pues, ejecutar todas las acciones restantes
(que en la inmensa mayoria de los casos no produciran ningun error) antes de ésta.

7/ Ejecucion de las tareas propias del tramite cuando éste no se finaliza

La condicién para que un tramite conste como finalizado es que entre los pardmetros de invocacion
se encuentre la clave “taskend” y que su valor sea 1. Esta condicidn ya se incorpora por defecto en
las llamadas estandar que se hacen desde el cliente y se incorpora a todas las llamadas del servidor
que no indique explicitamente lo contrario.

Es precisamente en estos casos (“taskend”!=1) en los que NO se va a ejecutar el método
mencionado anteriormente, ya que, a efectos funcionales, no se “esta finalizando” el tramite, sino
que se esta dejando un registro de ejecucion histdrico,

7/ Gestion de las solicitudes de tramites
Cuando se cumplimenta una solicitud de tramite se debe marcar dicha solicitud como finalizada.

public EntityResult manageTaskRequests (Hashtable taskParams, int sesionId, Connection con)
throws Exception

8/ Gestion de la interaccion con el tramite de solicitud

No es el mismo caso que el anterior, aunque pueda parecerlo. En este método se comprueba si el
tramite que estamos ejecutando procede del tramite de solicitud de tramite y en dicho caso,
actualiza el estado o los datos del mismo.

public EntityResult manageRequestTask(Hashtable taskParams, Hashtable taskFormData, int
sessionID, Connection con) throws Exception

s Imatia

your innovation partner

IY] MANUAL

9/ Gestion de los cambios de estado del expediente derivados del tramite

Se tiene para ello en cuenta la definicién del tipo de tramite (a que estado debe evolucionar el
expediente tras su finalizacion) ademas de si hay que dejar constancia de este cambio en el histdrico
de tramitacidon con un tramite de cambio de estado.

public EntityResult executeProcedureStateChange (Hashtable taskParameters, Hashtable
taskData, int sessionID, Connection con) throws Exception

10/ Gestion de la interaccion con el WF

Se efectlan las operaciones de interaccion con el WF: evolucionarlo, marcar una tarea como
ejecutada fuera de orden, etc.

public void manageTaskGuideActions (Hashtable taskGuideParameters , int sessionID,
Connection con) throws Exception

11/ Obtencion y actualizacion del campo de descripcion de la instancia del tramite.

Al tratarse de un valor que puede depender de los datos almacenados en la tabla del tramite, no se
puede obtener antes. Es el valor que se mostrara en la tabla de tramites de la pantalla del
expediente. Por defecto, se muestra la columna especificada en la definicion del tipo de tramite,
pero podria extenderse para que esta descripcion pudiese tener el origen que se desee.

public void manageTaskDescription (Hashtable taskParameters, Hashtable taskData, int
sessionID, Connection con) throws Exception

12/ Envio de avisos.

Tras la ejecucion de un tramite, si hay algin destinatario configuraro a tal efecto, se envia un aviso
a dicho destinatario a través de este método:

public EntityResult manageTaskNotices (Hashtable taskparameters, Hashtable taskFormData,
int sessionID, Connection con) throws Exception

Sin embargo, la mejor forma de particularizar el envio de un aviso no es sobrecargando dicho
método sino haciendo uso de los siguientes:

public Object getidserviceNoticeDestiny(Hashtable taskparameters,Hashtable taskFormData,int
sessionID, Connection con)throws Exception

Con este método podemos configurar la obtencion del ID de la unidad de servicio (usuario) al que se
va a enviar el aviso una vez finalizado el tramite.

public Hashtable builtMessageNoticeData(Hashtable taskparameters, Hashtable taskFormData,
int sessionID, Connection con) throws Exception

Con este método se pueden configurar que informacién se le va a enviar al sistema de avisos para
gue construya el aviso.

Guardar los datos del tramite

El método a través del que se guardan los datos del tramite es el siguiente:

public EntityResult saveTaskData(Hashtable saveTaskParams, Hashtable taskData, int
sessionID, Connection con) throws Exception

En este caso se trata de un proceso mucho mas sencillo que el de finalizacion ya que toda la
interaccion con tablas, WF, etc se ignora. Simplemente se insertan o actualizan los datos en la
entidad asociada al tramite.

Generalmente si es necesario sobrecargar algo en este proceso seria recomendable hacerlo en la
entidad correspondiente mas que en el gestor de tramitacion.

Problema

El ejercicio a realizar para ilustrar un ejemplo de programacion del gestor de tramitacion se divide en
tres partes:

s Imatia

your innovation partner

IY] MANUAL

1. Cuando se finalice el tramite (y sélo cuando se finalice), agregar al asunto del expediente el
texto: “Se han dado de alta los datos del menor”. Si se finaliza n veces, el texto aparecera n
veces.

2. El mismo caso que el anterior pero no sélo cuando se finalice sino cada vez que se graben los
datos.

3.Si el tramite se hace a través de la guia de tramitacion, lo indicaremos en las observaciones
del propio tramite, en cualquier caso. El texto serd “Se ha guardado a través de la guia”.

Solucion apdo. 1

[.]

Solucidon apdo 2.

[...]

Solucién apdo. 3

]

En general no existen unas condiciones fijas y claras por las que un elemento se deba almacenar en
base de datos o en cddigo. A modo de recomendaciones se podria comentar lo siguiente, aplicado
tanto a formularios como entidades:

e Si el tramite es muy variable: Es mejor guardarlo en BBDD, ya que nos permite realizar
modificaciones sobre el de forma rapida y sin necesidad de redespliegues.

e Si el tramite es complejo y forma parte de un mdédulo mas completo: Es mejor almacenarlo en
codigo ya que nos permite un control mas estricto sobre el mismo.

e Hay que tener en cuenta que una vez que se elige una de las dos opciones, no estamos
obligados a continuar con ella hasta el final. Por ejemplo:

o Estamos en fase de consultoria definiendo un tramite que sabemos que va a tener
bastante ldgica. Para poder tener una interaccion flexible con el usuario cliente en
esta fase de definicién creamos el formulario en BBDD y lo vamos modificando en
caliente. Asi podemos ensefiarle como se va adaptando a sus necesidades (al menos
en términos de aspecto) de forma rapida. Una vez cerrada o semi-cerrada esta fase
de definicién ya nos podriamos llevar el XML de definicion al codigo y seguir desde
ese punto.

o Hemos cerrado la definicion de un trémite complejo en cddigo. Podemos hacer
pequefias particularizaciones en BBDD partiendo del XML definido en codigo.

Vamos a debatir sobre una serie de casos para analizar que seria lo mas conveniente, si incorporar
la logica al cliente o al servidor. Ldgicamente, en la mayor parte de las ocasiones habra que
programar en ambos puntos, pero ahora se trata de comentar casos muy sencillos y puntuales:

Problema 1:

Necesitamos un nuevo campo que le aplica un porcentaje al coste del colegio para obtener dos
valores:

¢ Lo que tiene que pagar el Ayuntamiento: 30% del coste del colegio
e Lo que tiene que pagar el Gobierno Auténomo: 70% del coste total

Estos campos deben mostrarse en el formulario pero no ser editables. También deberian guardarse
en BBDD para alimentar plantillas e informes

s Imatia

your innovation partner

IY] MANUAL

Problema 2:

Necesitamos una opcidn para validar la letra de un nuevo campo que va a contener un DNI.

Problema 3:

Necesitamos evitar ingresar edades mayores de 16 afios

Problema 4:

Necesitamos cambiar el tipo de expediente en funcidn de la edad del menor:
¢ Si es menor de 10 afios: Ayuda Infantil
¢ Si es mayor de 10 anos: Ayuda juvenil

Incorporacion de un tramite programado avanzado

Problema

Vamos a completar ahora el tramite con la llamada a un WebService publico sencillo. Por ejemplo,
tenemos este disponible que nos devuelve la hora:

http://dotnet.jku.at/buch/samples/7/simple/TimeServicel.asmx?WSDL
El ejercicio que vamos a hacer ahora es actualizar la hora de ultima ejecucién del tramite con la hora
proporcionada por ese servicio cada vez que se guardan cambios.

Para ello no nos vamos a lanzar a sobrecargar el método doTaskActions con la logica de llamada al
WebService sino que lo vamos a intentar generalizar un poco mas incluyendo un nuevo elemento:
Las referencias remotas.

Las referencias remotas son una herramienta que nos proporciona Ontimize para disponer de
“servicios” configurables en el servidor. Es un elemento similar a las entidades pero que no tiene por
gue tener ninguna relacién con la Base de Datos y dispone de una configuracién mucho mas potente
que las entidades.

En la versiéon actual Cividas.V2.91 las referencias remotas aln se tienen que definir al “modo
Ontimize” es decir, editando un archivo de propiedades en la carpeta de instalacion del servidor,
mas concretamente:

com/cividas/server/conf/remotereferences.xml

aunque la ruta de este archivo es parametrizable.

En la proxima version, Cividas.V2.95, la gestidon de las referencias remotas se comparte entre el
archivo antes mencionado y la base de datos, de forma que en la aplicacion existird un maestro de
referencias remotas que se podra configurar totalmente en Base de Datos (excepto la logica de
negocio asociada, claro esta).

Se dispone de un manual de utilizacion de las referencias remotas, tanto desde el punto de vista de
Ontimize como teniendo en cuenta los agregados que proporciona Cividas, encaminados a una mas
facil parametrizacion dinamica.

Problema

Vamos a generalizar la llamada al WebService anterior para que sea una referencia remota que
pueda ser utilizada de forma cdmoda en cualquier otro punto de la aplicacion.

s Imatia

your innovation partner

IY] MANUAL
Solucion

[.]

Problema

Vamos a parametrizar la llamada al WebService de forma que:
¢ Se parametrice la URL de invocacion del WS.
e Se parametrice el prefijo a afadir delante de la hora.
e Se parametrice si se aplica el prefijo o no.

Solucion

[...]

Problema

Vamos a enviar dos avisos indicando que se ha ejecutado la tarea:
¢ Un aviso interno a la persona que tiene el expediente en su buzén.
¢ Un correo electrdénico a una direccion especificada.

Solucion

[...]

Otras utilidades de la plataforma

Al estar la plataforma Cividas desarrollada sobre el framework Ontimize, una de las utilidades de las
gue se dispone es la extension de elementos, esto es:

- Formularios

- Fichero de definicion del menu de la aplicacion

- Fichero de definicion de la barra de botones de la aplicacion
- Fichero de definicion de la aplicacion cliente

- Ficheros de propiedades de las entidades

Su modo de empleo (detallado para cada uno de los elementos extendibles) se define en un manual
centrado en este aspecto que ofrece Ontimize.

Ahora bien, al ser Cividas, no solo una plataforma sino también un producto que evoluciona con el
tiempo, hay que tener un especial cuidado a la hora de hacer cierto tipo de extensiones en el
siguiente sentido:

- En una determinada versién la plataforma proporciona un mend determinado, una botonera
determinada y un conjunto de formularios determinado

- Un desarrollador modifica, p.e. uno de los formularios para afiadir un campo. Se preocupara
por que el nuevo formulario tenga un aspecto apropiado en funcion de la version que la
plataforma ofrece.

- En la siguiente version la plataforma ha hecho evolucionar dicho formulario para incorporar
nuevas funcionalidades. Esto probablemente implique alteraciones en el aspecto.

5728 Imatia

your innovation partner

IY] MANUAL

- El formulario extendido por el desarrollador puede, en este punto, verse alterado de forma
significativa y no siempre positivamente. Un problema mayor se encontraria si, p.e. el
desarrollador agrega un campo y la plataforma en una versién posterior agrega ese mismo
campo.

- Por tanto, el desarrollador en cada actualizacion de la plataforma tendria que revisar TODAS
sus extensiones para comprobar que ninguna de ellas haya sido alterada.

- Desde la plataforma NO se van a tener en cuenta las extensiones que los desarrolladores
apliquen a partir de lo ofrecido por la misma. Se garantiza, eso si, la compatibilidad hacia
atras del codigo desarrollado, pero si es necesario, pongamos por caso, reordenar la
pantalla de registro de entrada, NO se va a tener en cuenta si en algin proyecto se ha
extendido dicha pantalla.

Siguiendo en esta linea argumental, en los casos en que se necesite alguna modificacién sobre
alguna de las pantallas de la aplicacién se recomienda reportar esa necesidas para evaluar la opcién
de incorporarla al producto. SOLO EN CASOS MUY PARTICULARES se deberian extender formularios
de producto (se entiende por formularios de producto todos los que no estan relacionados con los
tramites).

A pesar de todo lo comentado en el apartado anterior, vamos a hacer un pequefio ejemplo que
incluya la extension del mend y de un formulario. Lo que vamos a hacer es partir de un formulario
sencillo y anadirle un botén que consulte la hora del WS que definimos anteriormente. Utilizaremos
el formulario de edicidn de las entidades administrativas para tal efecto.

Problema

En las entidades administrativas queremos un botdn que vuelque la hora obtenida del WS al campo
de observaciones. Podriamos pensar en: “lo razonable seria meterlo en un campo nuevo y extender
la entidad también”. Sin embargo, en el caso de entidades, la extensién es mas critica si cabe.
Pongamos que afiadimos un nuevo campo. Tendriamos que:

- Afadirlo a la tabla en BBDD
- Afadirlo a la vista en BBDD
- ARadirlo al properties de la entidad mediante extension

Ahora pongamos que en la siguiente version Cividas afiade otro campo (distinto). Tendremos:
- Script de agregado del campo a la tabla en BBDD: Ningun problema.
- Script de modificacion de la vista asociada: Se pisara el campo agregado en la extension.
- Properties modificado: Ningun problema.

Por otro lado, queremos que esté localizado en una posicion distinta dentro del menu.

Solucion

[.]

Las integraciones con terceros se plantean en Cividas SIEMPRE como un extension de los origenes
de datos diponibles y NUNCA como una extension del modelo de datos de interesados de la
plataforma, por lo comentado precisamente en el apartado anterior.

Debido a que la implementacion de un caso practico resulta ligeramente compleja por la
infraestructura necesaria para que el ejemplo sea los suficientemente significativo, se realizara una
descripcion semi-tedrica partiendo de la documentacion disponible sobre la forma de realizar una
integracion con terceros.

26728 Imatia

your innovation partner

IY] MANUAL

En este apartado vamos a describir el funcionamiento de los crons y las acciones asociadas a través
de un ejemplo.

Definicion del cron

Un cron es, a fin de cuentas, equivalente a un proceso que se tiene que despertar en un momento
determinado y ejecutar una operacion.

Como en otros casos tenemos una parte de configuracion y definicion dentro de la propia aplicacion
y otra de implementacion del cddigo que ejecute las tareas que necesitemos en cada caso.

En Cividas existe una clase para implementar la accién de Cron por defecto:
com.cividas.server.utils.actions.DefaultCividasCron

esta clase extiende la abstracta proporcionada por Ontimize:
com.ontimize.util.quartz.AbstractTask

y ademas implementa la interfaz:
com.cividas.server.utils.actions.ICividasCron

gue proporciona algin método extra para completar la funcionalidad dada por Ontimize. Vamos a
continuacién, pues, definir un pequefio problema que resolveremos haciendo uso de estas
herramientas.

Problema 1

Queremos crear un proceso, que se levante cada 20 segundos y que actualice las observaciones de
TODAS las entidades administrativas con el resultado de la llamada a la referencia remota creada
anteriormente.

Solucion 1

[...]

Ejecucion de acciones

Siguiendo con el ejemplo actual, ahora nos centraremos en el combo que nos permite definir la
accion a realizar en caso de error durante la ejecucion del proceso. Este tipo de acciones también
son configurables desde la aplicacion pero su implementacion difiere ligeramente sobre la de
ejecucion de procesos. Cabe sefalar, en todo caso, que estas acciones estaran disponibles tanto en
la definicion de los procesos a ejecutar como en la definicién de controles y plazos sobre fechas de
los tramites, ya que en ambos casos la interfaz a implementar es la misma y el combo que alimenta
a la seleccion también es el mismo.

En definitiva, se trata de clases que deben implementar la siguiente interfaz:

com.cividas.server.utils.actions.ICividasActions

Esta interfaz impone sobre todo dos métodos:
public EntityResult executeAction(Hashtable parameters, EntityReferencelLocator refLocator)
throws Exception;
public EntityResult executeAction(Hashtable parameters, EntityReferencelLocator refLocator,
int sessionID,Connection con) throws Exception ;
Realmente ambos métodos son versiones de la misma utilidad, una teniendo en cuenta que
disponemos de un ID de sesion y un conexion contra la BBDD vy otra teniendo en cuenta que la
accién se puede lanzar desde cualquier punto sin tener los valores anteriores. La recomendacion es
estructurar nuestra accion de una forma similar a lo comentado en la Referencia Remota: El grueso
de la ldgica ira incluido en el método sin conexion siendo la implementacion del otro una mera capa

que provee de ID de sesion y establece una conexion contra la BBDD para acabar llamando con esa
informacién al primer método.

s Imatia

your innovation partner

IY] MANUAL

Problema 2

En nuestro caso vamos a definir una accién para que en caso de error deje constancia del mismo en
las observaciones del cron.

Solucion 2

[.]

En este punto se debatird la conveniencia o no de utilizar subprocesos del WF o bien los procesos
secundarios.

En este apartado se tratard de afadir un boton que permita el rellenado de un informe Jasper
configurable a través de la parametrizacion de Cividas.

528 Imatia

your innovation partner

